Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 2): 130452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417755

ABSTRACT

As a traditional Chinese medicinal and edible homologous plant, Onosma glomeratum Y. L. Liu has been used for treating lung diseases in Tibet. In this study, a pectin polysaccharide, OGY-LLPA, with a molecular weight of 62,184 Da, was isolated and characterized by GC-MS and NMR analysis. It mainly consists of galacturonic acid (GalA), galactose (Gal), rhamnose (Rha), and arabinose (Ara), with a linear main chain of galacturonic acid (homogalacturonan, HG) inserted by part of rhamnose galacturonic acid (rhamnogalacturonan, RG), attaching with arabinogalactan (AG) branches at RG-I. Both in the LPS-induced A549 cell model and LPS-induced pneumonia mouse model, OGY-LLPA demonstrated strong anti-inflammatory effects, even comparable to DEX, indicating its potential as an anti-pneumonia candidate agent. Moreover, low-dose OGY-LLPA alleviated LPS-induced pulmonary inflammation by inhibiting the NF-κB signaling pathway. Overall, these findings could not only contribute to the utilization of Onosma glomeratum Y. L. Liu., but also provides a theoretical basis for the treatment of inflammation-related diseases.


Subject(s)
Hexuronic Acids , NF-kappa B , Pneumonia , Mice , Animals , Lipopolysaccharides , Rhamnose , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/analysis , Signal Transduction , Pneumonia/chemically induced , Pneumonia/drug therapy
2.
Front Cell Infect Microbiol ; 13: 1271448, 2023.
Article in English | MEDLINE | ID: mdl-37868352

ABSTRACT

Background: Aeromonas hydrophila is an important pathogen that mainly harms aquatic animals and exhibits resistance to a variety of antibiotics. This study investigated the effect of epigallocatechin-3-gallate (EGCG) on the virulence factors of A.hydrophila and its impact on adhesion, invasion, and cytotoxicity in Caco-2 cells. The potential mechanism of antibacterial activity of EGCG was investigated by transcriptomic analysis. Results: EGCG not only inhibited the production of biofilm, hemolytic activity, motility, and protease activity of A.hydrophila, but also reduced its adhesion, invasion, and cytotoxicity in Caco-2 cells. Transcriptomic analysis indicated that the antimicrobial activity of EGCG may be achieved by weakening the chemotaxis and stress response of the bacteria, as well as inhibiting the TonB system. Animal studies demonstrated that EGCG can significantly improve the survival rate and organs damage of zebrafish infected with A.hydrophila. Conclusion: EGCG would be a potential alternative drug for the prevention and treatment of A. hydrophila infections by anti-virulence mechanism.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Animals , Humans , Aeromonas hydrophila/genetics , Zebrafish/microbiology , Caco-2 Cells , Transcriptome , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology
3.
Nutrients ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37892424

ABSTRACT

Eriodictyol occurs naturally in a variety of fruits and vegetables, and has drawn significant attention for its potential health benefits. This study aims to look into the effects of eriodictyol on acute liver injury (ALI) induced by LPS/D-GalN and elucidate its potential molecular biological mechanisms. A total of 47 targets were predicted for the treatment of ALI with eriodictyol, and the PI3K/AKT signaling pathway played a key role in the anti-ALI processing of this drug. The in vivo experiment showed that eriodictyol can effectively reduce liver function-related biochemical indicators such as ALT, AST, and AKP. Eriodictyol can also up-regulate the levels of SOD and GSH, and inhibit the release of IL-1ß, IL-6, and TNF-α. Additionally, TUNEL staining, immunohistochemistry, and RT-PCR experiments showed that eriodictyol activated the PI3K/AKT pathway and decreased the expression of Bax, caspase3, and caspase8 while increasing the expression of Bcl-2 m-RNA. Finally, molecular docking experiments and molecular dynamics simulations confirmed the stable binding between eriodictyol and PI3K, AKT molecules. This study showed that eriodictyol can activate the PI3K/AKT signaling pathway to alleviate ALI-related oxidative stress and apoptosis.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Signal Transduction , Liver/metabolism , Oxidative Stress , Apoptosis
4.
Front Vet Sci ; 10: 1123449, 2023.
Article in English | MEDLINE | ID: mdl-37275616

ABSTRACT

Introduction: Chebulae Fructus (Terminalia chebula Retz.) is a well-known traditional Chinese medicine (TCM), one of the family Combretaceae, whose immature fruit is called Fructus Chebulae Immaturus or Zangqingguo. This present study aimed at detecting the target and therapeutic mechanism of Chebulae Fructus against immunosuppression through network analysis and experimental validation. Methods: Effective components and potential targets of Chebulae Fructus were Search and filtered through the Chinese herbal medicine pharmacology data and analysis platform. A variety of known disease target databases were employed to screen the therapeutic target proteins against immunosuppression and thus constructing a protein-protein interaction network. Hub genes and key pathways in this study were identified by continuous project enrichment analysis. Further, the core targets and therapeutic mechanism of Chebulae Fructus against immunosuppression in Chinese yellow quail through animal experiment. Results: Seventy-five identifiable major candidate targets of Chebulae Fructus were found and thus constructing a drug-compound-target-disease network. Targets derived from gene enrichment analysis play pivotal roles in lipid and atherosclerosis, fluid shear stress and atherosclerosis, and the hepatitis B pathway. Height of plicate and areas of lymphoid follicle were both increased and the expression of GATA-3 and T-bet was upregulated in Chinese yellow quail fed with Chebulae Fructus in animal experiment. Conclusion: Chebulae Fructus may be a helpful Chinese medicine with immunosuppressive effect and prospective applications in future. Further research is also needed to understand the mechanisms of immunosuppression and the mechanism of action of immunomodulators.

5.
Bioorg Chem ; 138: 106643, 2023 09.
Article in English | MEDLINE | ID: mdl-37329815

ABSTRACT

1,4-naphthoquinones are the most widespread naphthoquinone compounds. Recently, many 1,4-naphthoquinone glycosides with different structural features have been obtained from both nature and synthesis, which has led to an increasing variety of naphthoquinone glycosides. In this paper, the structure variety and biological activity in recent 20 years are reviewed, and classified them according to the source and structure characteristics. Meanwhile the synthetic methods of O-, S-, C- and N-naphthoquinone glycosides and their structure activity relationships are also described. It was referred that the presence of polar groups of C2 and C5 and non-polar groups attached to C3 on the naphthoquinone ring are beneficial for their biological activities. It will provide more comprehensive literature resources for the future research of 1, 4-naphthoquinone glycosides and lay a theoretical foundation.


Subject(s)
Glycosides , Naphthoquinones , Glycosides/pharmacology , Glycosides/chemistry , Structure-Activity Relationship , Naphthoquinones/pharmacology , Naphthoquinones/chemistry
6.
Int J Biol Macromol ; 245: 125569, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37369257

ABSTRACT

Dihydromyricetin (DMY) is a natural dihydroflavonol compound known for its diverse pharmacological benefits. However, its limited stability and bioavailability posed significant challenges for further applications. To address these issues, in this study, an ion crosslinking method was utilized to prepare chitosan nanoparticles that were loaded with DMY. The synthesized chitosan nanoparticles (CS-DMY-NPs) were spherical in shape with particle size and ζ potential of 198.7 nm and 45.05 mV, respectively. Furthermore, in vitro release experiments demonstrated that CS-DMY-NPs had sustained release and protective effects in simulated gastric and intestinal fluids. CS-DMY-NPs exhibited better antioxidant activity by ABTS and DPPH radical scavenging activity than free DMY. In vivo study showed that CS-DMY-NPs alleviated cisplatin-induced kidney damage by inhibiting oxidative stress and proinflammatory cytokines, and had better activity compared to DMY (free). Immunofluorescence data showed that CS-DMY-NPs activated the Nrf2 signaling pathways in a dose-dependent manner to combat cisplatin-induced kidney damage. Our results demonstrate that CS-TPP has good compatibility with DMY, and CS-DMY-NPs exhibited better protective effects against cisplatin-induced acute kidney injury (AKI) than free DMY.


Subject(s)
Acute Kidney Injury , Chitosan , Nanoparticles , Humans , Chitosan/chemistry , Cisplatin/adverse effects , Nanoparticles/chemistry , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Particle Size
7.
Aging (Albany NY) ; 15(12): 5887-5916, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37379130

ABSTRACT

Swertia cincta Burkill is widely distributed along the southwestern region of China. It is known as "Dida" in Tibetan and "Qingyedan" in Chinese medicine. It was used in folk medicine to treat hepatitis and other liver diseases. To understand how Swertia cincta Burkill extract (ESC) protects against acute liver failure (ALF), firstly, the active ingredients of ESC were identified using liquid chromatography-mass spectrometry (LC-MS), and further screening. Next, network pharmacology analyses were performed to identify the core targets of ESC against ALF and further determine the potential mechanisms. Finally, in vivo experiments as well as in vitro experiments were conducted for further validation. The results revealed that 72 potential targets of ESC were identified using target prediction. The core targets were ALB, ERBB2, AKT1, MMP9, EGFR, PTPRC, MTOR, ESR1, VEGFA, and HIF1A. Next, KEGG pathway analysis showed that EGFR and PI3K-AKT signaling pathways could have been involved in ESC against ALF. ESC exhibits hepatic protective functions via anti-inflammatory, antioxidant, and anti-apoptotic effects. Therefore, the EGFR-ERK, PI3K-AKT, and NRF2/HO-1 signaling pathways could participate in the therapeutic effects of ESC on ALF.


Subject(s)
Liver Failure, Acute , Swertia , Humans , Swertia/metabolism , Lipopolysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Signal Transduction , Apoptosis , Oxidative Stress , ErbB Receptors/metabolism
8.
Front Immunol ; 14: 1159291, 2023.
Article in English | MEDLINE | ID: mdl-37153605

ABSTRACT

Aging is a biological process of progressive deterioration of physiological functions, which poses a serious threat to individual health and a heavy burden on public health systems. As population aging continues, research into anti-aging drugs that prolong life and improve health is of particular importance. In this study, the polysaccharide from stems and leaves of Chuanminshen violaceum was obtained with water extraction and alcohol precipitation, and then separated and purified with DEAE anion exchange chromatography and gel filtration to obtain CVP-AP-I. We gavaged natural aging mice with CVP-AP-I and performed serum biochemical analysis, histological staining, quantitative real-time PCR (qRT-PCR) and ELISA kit assays to analyze inflammation and oxidative stress-related gene and protein expression in tissues, and 16SrRNA to analyze intestinal flora. We found that CVP-AP-I significantly improved oxidative stress and inflammatory responses of the intestine and liver, restored the intestinal immune barrier, and balanced the dysbiosis of intestinal flora. In addition, we revealed the potential mechanism behind CVP-AP-I to improve intestinal and liver function by regulating intestinal flora balance and repairing the intestinal immune barrier to regulate the intestinal-liver axis. Our results indicated that C. violaceum polysaccharides possessed favorable antioxidant, anti-inflammatory and potentially anti-aging effects in vivo.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Oxidative Stress , Polysaccharides/pharmacology , Polysaccharides/chemistry , Aging , Plant Components, Aerial
9.
Int J Biol Macromol ; 242(Pt 1): 124689, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148926

ABSTRACT

The roots of Angelica sinensis have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this herb (aboveground part) are commonly discarded during the process of root preparations. A polysaccharide (ASP-Ag-AP) in the aboveground parts of A. sinensis was isolated and preliminarily characterized as typical plant pectin. ASP-Ag-AP exhibited noticeable protective effects against dextran sodium sulfate (DSS)-induced colitis, including reduction of colonic inflammation, modulation of barrier function, and alteration of gut microbiota and serum metabolite profile. Anti-inflammatory effects of ASP-Ag-AP were observed by inhibiting TLR4/MyD88/NF-κB signaling pathway in vitro and in vivo. Additionally, the level of serum metabolite 5-methyl-dl-tryptophan (5-MT) was reduced by DSS and restored by ASP-Ag-AP, which also negatively correlated with Bacteroides, Alistipes, Staphylococcus and pro-inflammatory factors. The protection from inflammatory stress on intestinal porcine enterocytes cells (IPEC-J2) of 5-MT was observed through the inhibition of TLR4/MyD88/NF-κB pathway. Besides, 5-MT also exhibited robust anti-inflammatory effect in colitis mice with improving colitis symptoms, barrier function and gut microbiota, which was the same as presented by ASP-Ag-AP. Therefore, ASP-Ag-AP could be a promising agent for colitis prevention and 5-MT could be the signal metabolite of ASP-Ag-AP on defending against intestinal inflammatory stress.


Subject(s)
Angelica sinensis , Colitis , Gastrointestinal Microbiome , Mice , Animals , Swine , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Angelica sinensis/metabolism , Toll-Like Receptor 4/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Polysaccharides/therapeutic use , Anti-Inflammatory Agents/pharmacology , Dextran Sulfate/adverse effects , Disease Models, Animal
10.
Bioorg Chem ; 135: 106501, 2023 06.
Article in English | MEDLINE | ID: mdl-37015152

ABSTRACT

As one of the most common malignancies in female dogs, no drugs have been developed specifically for the treatment of canine mammary carcinoma. In our previous study, a series of diterpenoid alkaloids derivatives were synthesized and exhibited good anti-proliferative activity in vitro against both normal and adriamycin-resistant human breast cancer cells lines. In this study, a series of structurally diverse aconitine-type alkaloids derivatives were also synthesized basing on the minimal modification principle, by modifying on A-ring, C-ring, D-ring, N-atom or salt formation on aconitine skeleton. Their anti-proliferative effects and mechanism on canine mammary cancer cells were investigated, exhibiting the importance of the substitution at A ring, the long chain ester at the C8, the hydroxyl group at the C13, the phenyl ring at the C14 and the N-ethyl group, while the methoxy group at the C1 and C16 showed little effect on the activity. The results of the proliferation, apoptosis and ultrastructure tests of the treated canine mammary carcinoma cells referred that the representative compound, aconitine linoleate (25) could block the cell cycle of canine mammary carcinoma cells in the G0/G1 phase, and exhibit the anti-proliferative effect by inducing apoptosis.


Subject(s)
Alkaloids , Breast Neoplasms , Carcinoma , Diterpenes , Dogs , Animals , Female , Humans , Aconitine/pharmacology , Aconitine/chemistry , Breast Neoplasms/drug therapy , Alkaloids/pharmacology , Alkaloids/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry
11.
Antimicrob Agents Chemother ; 67(5): e0001023, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36912655

ABSTRACT

Due to the accelerated appearance of antimicrobial-resistant (AMR) pathogens in clinical infections, new first-in-class antibiotics, operating via novel modes of action, are desperately needed. Brevicidine, a bacterial nonribosomally produced cyclic lipopeptide, has shown potent and selective antimicrobial activity against Gram-negative pathogens. However, before our investigations, little was known about how brevicidine exerts its potent bactericidal effect against Gram-negative pathogens. In this study, we find that brevicidine has potent antimicrobial activity against AMR Enterobacteriaceae pathogens, with MIC values ranging between 0.5 µM (0.8 mg/L) and 2 µM (3.0 mg/L). In addition, brevicidine showed potent antibiofilm activity against the Enterobacteriaceae pathogens, with the same 100% inhibition and 100% eradication concentration of 4 µM (6.1 mg/L). Further mechanistic studies showed that brevicidine exerts its potent bactericidal activity by interacting with lipopolysaccharide in the outer membrane, targeting phosphatidylglycerol and cardiolipin in the inner membrane, and dissipating the proton motive force of bacteria. This results in metabolic perturbation, including the inhibition of ATP synthesis; the inhibition of the dehydrogenation of NADH; the accumulation of reactive oxygen species in bacteria; and the inhibition of protein synthesis. Finally, brevicidine showed a good therapeutic effect in a mouse peritonitis-sepsis model. Our findings pave the way for further research on the clinical applications of brevicidine to combat prevalent infections caused by AMR Gram-negative pathogens worldwide.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria , Lipopeptides/pharmacology , Microbial Sensitivity Tests , Gram-Negative Bacteria
12.
Biomed Pharmacother ; 161: 114525, 2023 May.
Article in English | MEDLINE | ID: mdl-36921537

ABSTRACT

Major depression disorder is more common among adolescents and is a primary reason for suicide in adolescents. Some antidepressants are ineffective and may possess side effects. Therefore, developing an adolescent antidepressant is the need of the hour. We designed the stress model of adolescent male mice induced by chronic unpredictable stress (CUS). The mice were treated using Tongxieyaofang neutral polysaccharide (TXYF-NP), Tongxieyaofang acidic polysaccharide (TXYF-AP), TXYF-AP + TXYF-NP and fructooligosaccharide + galactooligosaccharides to determine their body weight, behavior, and serum hormone levels. RT-qPCR was used to detect the gene expression of Crhr1, Nr3c1, and Nr3c2 in the hypothalamus and hippocampus and the gene expression of glutamic acid and γ-aminobutyric acid-related receptors in the hippocampus. RT-qPCR, Western blot, and ELISA detected tryptophan metabolism in the colon, serum, and hippocampus. 16s rDNA helped sequence colon microflora, and non-targeted metabolomics enabled the collection of metabolic profiles of colon microflora. In adolescent male mice, CUS induced depression-like behavior, hypothalamic-pituitary-adrenal axis hyperactivity, hippocampal tissue damage, abnormal expression of its related receptors, and dysregulation of tryptophan metabolism. The 16s rDNA and non-targeted metabolomics revealed that CUS led to colon microflora disorder and bile acid metabolism abnormality. Tongxieyaofang polysaccharide could improve the bacterial community and bile acid metabolism disorder by upregulating the relative abundance of Lactobacillus gasseri, Lachnospiraceae bacterium 28-4, Bacteroides and Ruminococcaceae UCG-014 while preventing CUS-induced changes. TXYF-P can inhibit depression-like behavior due to CUS by regulating colonic microflora and restoring bile acid metabolism disorder. Thus, based on the different comparisons, TXYF-NP possessed the best effect.


Subject(s)
Depression , Hypothalamo-Hypophyseal System , Mice , Male , Animals , Depression/drug therapy , Depression/metabolism , Brain-Gut Axis , Tryptophan/pharmacology , Pituitary-Adrenal System , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Hippocampus , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/metabolism , Bile Acids and Salts/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
13.
Front Vet Sci ; 10: 980187, 2023.
Article in English | MEDLINE | ID: mdl-36777661

ABSTRACT

Introduction: Surveillance of the Seneca Valley virus (SVV) shows a disproportionately higher incidence on Chinese pig farms. Currently, there are no vaccines or drugs to treat SVV infection effectively and effective treatment options are urgently needed. Methods: In this study, we evaluated the antiviral activity of the following medium-chain fatty acids (MCFAs) or triglycerides (MCTs) against SVV: caprylic acid, caprylic monoglyceride, capric monoglyceride, and monolaurin. Results: In vitro experiments showed that monolaurin inhibited viral replication by up to 80%, while in vivo studies showed that monolaurin reduced clinical manifestations, viral load, and organ damage in SVV-infected piglets. Monolaurin significantly reduced the release of inflammatory cytokines and promoted the release of interferon-γ, which enhanced the viral clearance activity of this type of MCFA. Discussion: Therefore, monolaurin is a potentially effective candidate for the treatment of SVV infection in pigs.

14.
Biomed Pharmacother ; 160: 114271, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36724642

ABSTRACT

BACKGROUND: Pseudorabies virus (PRV) infections in susceptible non-porcine species trigger uncontrolled inflammations and eventually fatal encephalitis. Resveratrol (Res) has broad pharmacological functions including anti-virus, anti-inflammation, and neuroprotective. PURPOSE: We attempted to investigate the potential of Res in ameliorating PRV infection pathology in mice and decipher the mechanism of Res in treating PRV. METHODS: The mice were infected by PRV to investigate the protective effect of Res. Blood-brain barrier (BBB) permeability, H&E/Nissl/TUNEL staining, Real-time PCR and ELISA analyses were performed. Primary microglia and neuron were isolated from mice and cultured. The co-culture model of microglia and neuron was established by transwell. Immunofluorescence assay and flow cytometry were used. RESULTS: In this study, we showed that Res ameliorated brain damage by reducing BBB permeability in PRV-infected mice, and diminished the expressions of MMP-2, MMP-9 and ZO-1 in the cortex. Pathological changes of neurons by H&E/Nissl/TUNEL staining suggested that Res could alleviate neuronal lesions. Moreover, Res inhibited the expressions of pro-inflammatory factors (IL-6, TNF-α) and chemokines (CCL3, CXCL10, MCP-1), but increased the expressions of anti-inflammatory factors (IL-4, IL-10) and neurotrophic factor (TGF-ß, NGF and GDNF) in brain. In vitro cultured microglia cells, Res could suppress M1 microglia polarization and activate M2 microglia polarization. Co-culture of PRV-infected microglia with neuron cells by transwell system indicated that Res alleviated inflammatory response and neuronal apoptosis. CONCLUSION: This study provided evidence that Res could protect mice from PRV-induced encephalitis through regulation of microglia polarization and neuronal apoptosis suggesting the potential for treatment of viral encephalitis.


Subject(s)
Encephalitis , Herpesvirus 1, Suid , Mice , Animals , Microglia , Resveratrol/pharmacology , Neuroinflammatory Diseases , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Encephalitis/metabolism
15.
Carbohydr Polym ; 306: 120626, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746576

ABSTRACT

The roots of Salvia miltiorrhiza have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this plant are usually discarded in the production of roots preparation. To make better use of these plant resources, the polysaccharide isolated from the aerial part of S. miltiorrhiza was investigated for its potential protection against intestinal diseases. A pectic polysaccharide (SMAP-1) was isolated and characterized being composed of homogalacturonan as the main chain and rhamnogalacturonan type I as ramified region, with side chains including arabinans and possible arabinogalactan type I and II. SMAP-1 exhibited robust protective effects against dextran sodium sulfate (DSS)-induced colitis and restored colitis symptoms, colonic inflammation, and barrier functions. Anti-oxidative effects were also observed by up-regulating Nrf2/Keap1 signaling pathway. Additionally, the level of serum 5-methoxyindole-3-carboxaldehyde (5-MC) was restored by SMAP-1 identified in metabolomic analysis, being correlated with the aforementioned effects. Protection against oxidative stress on intestinal porcine enterocyte cells (IPEC-J2) by 5-MC was observed through the activation of Nrf2/Keap1 system, as also shown by SMAP-1. In conclusion, SMAP-1 could be a promising candidate for colitis prevention, and 5-MC could be the signal metabolite of SMAP-1 in protecting against oxidative stress in the intestine.


Subject(s)
Colitis , Salvia miltiorrhiza , Animals , Swine , NF-E2-Related Factor 2/metabolism , Salvia miltiorrhiza/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Colitis/chemically induced , Colitis/drug therapy , Signal Transduction , Polysaccharides/adverse effects , Dextran Sulfate/toxicity
16.
Bioorg Chem ; 132: 106342, 2023 03.
Article in English | MEDLINE | ID: mdl-36621157

ABSTRACT

The privileged structure binds to multiple receptors with high affinity, which is helpful to the development of new bioactive compounds. Indole is classified as a privileged structure, which may be one of the most important structural categories in drug discovery. As a special subset of indole compounds, 2-phenylindole seems to be one of most promising forerunners of drug development. In this paper, 106 articles were referenced to review the structural changes, biological activities and structure-activity relationship of compounds in recent 20 years, and classified them according to their pharmacological activities, from several aspects, including anticancer, antibacterial, anti-inflammatory, analgesic, antiviral, anti-parasite, the biological activities target to central nervous system, et al. It also points out the importance of artificial intelligence (AI) technology in discovery of new 2-phenylindole compounds in a broader prospect. This review will provide some ideas for researchers to develop new indole drugs.


Subject(s)
Anti-Bacterial Agents , Artificial Intelligence , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Indoles/pharmacology , Indoles/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
17.
J Sci Food Agric ; 103(1): 328-338, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-35871477

ABSTRACT

BACKGROUND: This study characterized an acidic polysaccharide (OHC-LDPA) isolated from the medicinal and edible homologous plant Onosma hookeri Clarke var. longiforum Duthie. The structure of OHC-LDPA was elucidated based on the analysis of infrared, one-/two-dimensional nuclear magnetic resonance, and gas chromatography-mass spectrometry data. The immunostimulatory effects of OHC-LDPA were identified by both in vitro and in vivo models. RESULTS: The structure of OHC-LDPA was elucidated as a typical pectin polysaccharide, consisting of galacturonic acid, galactose, arabinose, and rhamnose as the primary sugars, with linear galacturonic acid as the main chain and arabinogalacturonic acid as the main branched components. OHC-LDPA could significantly stimulate the proliferation and phagocytosis of RAW264.7 macrophages and the release of nitric oxide in vitro. Also, it could accelerate the recovery of spleen and thymus indexes, enhance the splenic lymphocyte proliferation responses, and restore the levels of interleukin-2, interleukin-10, interferon-γ, and immunoglobulin G in the serum in a cyclophosphamide-induced immunosuppressed-mice model. In addition, OHC-LDPA could restore the intestinal mucosal immunity and reduce the inflammatory damage. CONCLUSION: OHC-LDPA could improve the immunity both in vitro and in vivo and could be used as a potential immunostimulant agent. © 2022 Society of Chemical Industry.


Subject(s)
Boraginaceae , Polysaccharides , Mice , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Hexuronic Acids , Phagocytosis , RAW 264.7 Cells
18.
Front Microbiol ; 14: 1304198, 2023.
Article in English | MEDLINE | ID: mdl-38173680

ABSTRACT

The antibiotic resistance of Acinetobacter baumannii poses a significant threat to global public health, especially those strains that are resistant to carbapenems. Therefore, novel strategies are desperately needed for the treatment of infections caused by antibiotic-resistant A. baumannii. In this study, we report that brevicidine, a bacterial non-ribosomally produced cyclic lipopeptide, shows synergistic effects with multiple outer membrane-impermeable conventional antibiotics against A. baumannii. In particular, brevicidine, at a concentration of 1 µM, lowered the minimum inhibitory concentration of erythromycin, azithromycin, and rifampicin against A. baumannii strains by 32-128-fold. Furthermore, mechanistic studies were performed by employing erythromycin as an example of an outer membrane-impermeable conventional antibiotic, which showed the best synergistic effects with brevicidine against the tested A. baumannii strains in the present study. The results demonstrate that brevicidine disrupted the outer membrane of A. baumannii at a concentration range of 0.125-4 µM in a dose-dependent manner. This capacity of brevicidine could help the tested outer membrane-impermeable antibiotics enter A. baumannii cells and thereafter exert their antimicrobial activity. In addition, the results show that brevicidine-erythromycin combination exerted strong A. baumannii killing capacity by the enhanced inhibition of adenosine triphosphate biosynthesis and accumulation of reactive oxygen species, which are the main mechanisms causing the death of bacteria. Interestingly, brevicidine and erythromycin combination showed good therapeutic effects on A. baumannii-induced mouse peritonitis-sepsis models. These findings demonstrate that brevicidine is a promising sensitizer candidate of outer membrane-impermeable conventional antibiotics for treating A. baumannii infections in the post-antibiotic age.

19.
Front Vet Sci ; 9: 972326, 2022.
Article in English | MEDLINE | ID: mdl-36419729

ABSTRACT

Traditional Chinese medicine (TCM) formulas can be adjusted on the basis of TCM basic theory to achieve the best curative effect, especially for diseases with complex pathogenesis, such as post-weaning diarrhea (PWD). Shugan Jianwei Sijunzi decoction (SJ-SJZD) can be recognized as modified Sijunzi Decoction (SJZD) supplemented with Astragalus mongholicus Bunge, Bupleurum chinense DC, Citrus × aurantium L., and Crataegus pinnatifida Bunge (fruit) in a fixed dosage ratio. The inactive ingredients were subsequently added to make granule, which was Shugan Jianwei Sijunzi granule (SJ-SJZG). Previous studies have confirmed the antagonism of SJ-SJZG to PWD. However, the mechanism of SJ-SJZG protective effects on small intestine in weaned Rex rabbits remained unclear. Animals were randomly divided into negative control (NC), low dose (LD), medium dose (MD), high dose (HD), and positive control (PC). SJ-SJZG significantly increased the intestinal length and the jejunum villi length. The SIgA level was statistically increased in duodenum and jejunum with the ELISA. Immunohistochemical detection showed that SIgA protein expression was also increased significantly in jejunum. Meanwhile, the relative expression of Zo1 in duodenum and jejunum of SJ-SJZG group increased significantly. SJ-SJZG significantly increased the relative expression of occludin in duodenum and jejunum as well. Moreover, real-time PCR results showed a significant increase in GLUT2 and SGLT1 relative expression in ileum. SJ-SJZG could also obviously enhance the expression of GLUT2 in jejunum and the expression of SGLT1 in duodenum. In conclusion, SJ-SJZG had been proven to be effective in promoting the development of small intestine and improving the immunity of small intestine. Moreover, SJ-SJZG could ensure the integrity of mucosal barrier and increase the ability of intestine to absorb glucose in small intestine.

20.
Molecules ; 27(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364088

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a disease with a major economic impact in the global pig industry, and this study aims to identify potential anti-PRRSV drugs. We examined the cytotoxicity of four medium-chain fatty acids (MCFAs) (caprylic, caprylic monoglyceride, decanoic monoglyceride, and monolaurin) and their inhibition rate against PRRSV. Then the MCFAs with the best anti-PRRSV effect in in vitro assays were selected for subsequent in vivo experiments. Potential anti-PRRSV drugs were evaluated by viral load assay, pathological assay, and cytokine level determination. The results showed that caprylic monoglyceride (CMG) was the least toxic to cells of the four MCFAs, while it had the highest PRRSV inhibition rate. Then the animals were divided into a low-CMG group, a medium-CMG group, and a high-CMG group to conduct the in vivo evaluation. The results indicated that piglets treated with higher concentrations of caprylic monoglyceride were associated with lower mortality and lower viral load after PRRSV infection (p < 0.05). The pulmonary pathology of the piglets also improved after CMG treatment. The levels of pro-inflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, TNF-α) were significantly downregulated, and the levels of anti-inflammatory cytokine (IL-10) were significantly upregulated in the CMG-treated piglets compared to the positive control group (p < 0.05). Taken together, the present study revealed for the first time that caprylic monoglyceride has strong antiviral activity against PRRSV in vitro and in vivo, suggesting that caprylic monoglyceride could potentially be used as a drug to treat PRRS infection.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Antiviral Agents/pharmacology , Monoglycerides/pharmacology , Porcine Reproductive and Respiratory Syndrome/drug therapy , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL
...